• Nature Communications, 2026

    Advanced Materials, 2026

    JACS, 2026

    ACS Catalysis, 2026

    JACS, 2025

    Science Advances, 2025

    Science, 2025

    Advanced Science, 2025

    JACS, 2025

    Adv. Func. Mat., 2025

    JACS, 2025

    Angewandte Chemie, 2025

    JACS, 2025

    Angewandte Chemie, 2025

    ACS Catalysis, 2025

    Advanced Materials, 2025

    Nature Communications, 2025

    Chemical Society Reviews, 2025

    J. Phys. Chem. Lett, 2025

    Advanced Functional Materials, 2025

    Advanced Science, 2025

    ACS Sensors, 2025

    ACS Sustainable Chem & Eng, 2025

    Angewandte Chemie, 2025

    Nature Communications, 2025

    Advanced Functional Materials, 2025

    Angewandte Chemie, 2025

    Nature Photonics, 2025

    Advanced Functional Materials, 2025

    Angewandte Chemie, 2025

    Nature Communications, 2025

    Nature Catalysis, 2025

    Nano Letters, 2025

    Advanced Science, 2025

    Nature, 2024

    Nature Physics, 2024

    Nature Photonics, 2024

    ACS Nano, 2024

    Nature Photonics, 2024

    Science Advances, 2024

    Nature Communications, 2024

    Communications Chemistry, 2024

    Angew. Chem., 2024

    ACS Nano, 2024

    Advanced Energy Materials, 2024

    Environmental Sci & Technology, 2024

    J. Colloid & Interface Science, 2024

    ACS App. Mat. & Interfaces, 2024

    J. Phys. Chem C, 2024

    Nanophotonics, 2024

    Angew. Chem., 2024

    Nano Letters, 2024

    Nature Communications, 2024

    ACS Photonics, 2024 – Cover

    ACS Photonics, 2024

    Nature Photonics, 2024

    Adv. Opt. Mat. 2024

    Angewandte Chemie Int. Ed., 2024

    ACS Nano, 2024 – Cover

    ACS Nano, 2024

    JACS, 2024

    Nature Catalysis, 2023 – Cover

    Nature Catalysis, 2023

    Angewandte Chemie Int. Ed., 62, 46, 2023

    ACS Photonics, 2023

    ACS Photonics, 2023

    Advanced Optical Materials, 2301496, 2023

    Angewandte Chemie Int. Ed., e202309351, 2023

    Philosophical Transactions of the Royal Society A, 2023

    Angewandte Chemie Int. Ed., e202305651, 2023

    ACS Catalysis, 2023

    Chemical Reviews 123, 13, 8488–8529, 2023 – Cover

    Nature Communications, 4, 3813, 2023

    App. Phys. Rev., 2023

    ACS Appl. Mater. Interfaces, 2023

    Chemical Reviews, 2023

    Angewandte Chemie Int. Ed., 2023 – Cover

    J. Phys. Chem. Lett., 14, 3749, 2023

    Nano Letters, 23, 2883, 2023

    Advanced Functional Materials, 2300411, 2023

    Advanced Materials, 2300695, 2023

    Journal of the Optical Society of America B, 40, 1196, 2023

    Angewandte Chemie Int. Ed., e202300873, 2023

    ACS Nano, 17, 3119, 2023

    Nature, 614, 230, 2023

    Chemistry–A European Journal, 29, e202203152, 2023

    Angewandte Chemie Int. Ed., 62, e2022170, 2023

    Environmental Science: Nano, 10, 166, 2023

    ACS Nano, 17, 411, 2023

    Angewandte Chemie Int. Ed., 61,  e202212640, 2022

    ACS Photonics, 9, 11, 2022

    Nature Communications, 13, 6082, 2022

    Advanced Photonics Research, 2200111, 2022

    ACS Nano, 16, 8, 2022

    Journal of the American Chemical Society, 144, 32, 2022

    Nano Letters, 22, 6276, 2022

    Journal of the American Chemical Society, 144, 14005, 2022

    Advanced Functional Materials, 2203418, 2022

    Chemical Reviews, 122, 19, 2022

    European Physical Journal D, 76, 109, 2022

    Optica, 9, 551, 2022

    Advanced Optical Materials, 10, 2200397, 2022

    Applied Catalysis B: Environmental, 306, 5 (121093), 2022

    Nature Reviews Chemistry, 6, 259, 2022

    Advanced Functional Materials, 2111322, 2021

    Nano Letters, 22, 5, 2022

    ACS Photonics, 9, 3, 2022

    Journal of the American Chemical Society, 144, 7, 2022

    ACS Energy Letters, 7, 2, 2022

    J. Chem. Phys., 156, 034201, 2022

    Angewandte Chemie Int. Ed., 61, 4 (e202113664), 2022

    Nano Letters, 21, 24, 2021

    ACS Energy Letters, 6, 4273, 2021

    Advanced Energy Materials, 11, 46 (2102877), 2021

    Nano Letters, 21, 19, 2021

    ACS Photonics, 8, 10, 2021

    Nanophotonics, 10, 17, 2021

    Journal of Materials Chemistry A, 9, 20024, 2021

    Nano Letters, 21(15), 6592, 2021

    ACS Nano, 15(6), 10553, 2021

    Chinese Journal of Catalysis, 42, 1500, 2021

    ACS Photonics, 8(5), 1469, 2021

    Journal of Applied Physics, 129, 150401, 2021

     ACS Nano, 15, 2, 2021

    Nano Energy, 82, 105767, 2021

    ACS Nano, 14(12), 16202, 2020

    ACS Nano, 14(12), 17693, 2020

    ACS Energy Letters, 5, 3881, 2020

    Nanoscale Horizons, 5(11), 1500, 2020

    Nano Letters, 20, 7627, 2020

    Science Advances, 6, eabb1821, 2020

     Science Advances, 6, eabb3123, 2020

    J. Chem. Phys., 153, 010401, 2020

    ACS Nano, 14, 7, 2020

    ACS Photonics, 7(6), 1403, 2020

    Angewandte Chemie Int. Ed., 59, 5454, 2020

    ACS Nano, 14 (2), 2456, 2020

    Advanced Science, 6, 1901841, 2019

    Angewandte Chemie Int. Ed., 58, 2, 2019

    Accounts of Chemical Research, 52, 2525, 2019

    ACS Photonics, 6, 1466, 2019

    ACS Photonics, 6, 815, 2019

    Nano Letters, 19, 1867, 2019

    Faraday Discussions, 214, 123, 2019

    Faraday Discussions, 214, 73, 2019

    Physical Review Letters, 121, 253902, 2018

    Science, 362, 28, 2018

    Nano Letters, 18, 3400, 2018

    ACS Photonics, 5, 4, 1546, 2018

    J. Phys. Chem. C, 122, 7, 3893, 2018

  • Plasmonic Catalysis: From Fundamentals to Applications

    • Integrated Method for Determining Quantum Yield through Combined Microscopy Techniques. C. Gruber, M. Beladi Mousavi, A. Mancini, E. Cortes. EP23207502, 2023.
    •  
    • Advanced optical microscopy for real-time dynamics of energy materials. C. Gruber, F. Gröbmeyer, M. Beladi Mousavi, A. Mancini, E. Cortes. EP23198634, 2023.
    •  
    • Embedding of catalytically active nanoparticles into superstructures of plasmonic nanoparticles to enhance the photocatalytic activity. M. Herran, F. Schulz, E. Cortes. 22 186 109.9. July 2022.
    •  
    • Nano-detection, SERS active surfaces based on multi-scale antennas. N. Tognalli, E. Cortés, E. Calvo, M. E. Vela, A. Fainstein, R. C. Salvarezza. P20100102376. July 2010.

  • PhD Theses

    Li Zhu

    Christoph Gruber

    Yicui Kang

    Simone Vera Ezendam

    Lin Nan

    Matias Herran

    Harriet Amelia Walker

    Thomas Brick

    Master Theses

    2025 Klara V. Dömer – Imaging Hydrogen Evolution on Bimetallic Catalytic SurfacesLudwig-Maximilians-Universität München (LMU), Munich, Germany

    2025 Joel P. S. Mascarenhas – Enhancing Polaron Dynamics for Photoelectrochemical Water Splitting in BiVO4 MetasurfacesLudwig-Maximilians-Universität München (LMU), Munich, Germany

    2025 Matthis Bünning – Au@Al(OH)3 Nanostructure for Plasmon-Enhanced Direct Lithium Extraction
    Ludwig-Maximilians-Universität München (LMU), Munich, Germany

    2024 Sebastian Trautschold – Comparative Analysis of Metal Catalyst Films for CO2 Reduction Studies via Surface-Enhanced ATR-FTIR Spectroscopy.
    Ludwig-Maximilians-Universität München (LMU), Munich, Germany

    2024 Qiancheng Yang – Discovering CO2 Electroreduction Pathways with Sparse Machine Learning Method.

    Ludwig-Maximilians-Universität München (LMU), Munich, Germany

    2023 Sebastian Langer – Optical and Photoelectrocatalytic Analysis of Copper-Only Metasurfaces towards CO₂ Reduction.
    Ludwig-Maximilians-Universität München (LMU), Munich, Germany

    2022 Stefan Krühler – Ultrafast Dynamics of Hybrid Nanoparticles for Energy Conversion.
    Ludwig-Maximilians-Universität München (LMU), Munich, Germany

    2022 Jonas Tittel – Construction of a Transient-Absorption Infrared Spectro-Electrochemical setup.
    Ludwig-Maximilians-Universität München (LMU), Munich, Germany

    2021 Maximilian Maier – New Strategies for Tracking Kinetics of Photocatalytic Chemical Reactions on the Single-Molecule Level.
    Ludwig-Maximilians-Universität München (LMU), Munich, Germany

    2021 Franz Gröbmeyer – Imaging of Electrochemical Processes with an Interferometric Scattering Microscope.
    Ludwig-Maximilians-Universität München (LMU), Munich, Germany

    2021 Yicui Kang – Facet Effect of Au Nanocrystals in Plasmon-assisted Electrocatalysis.
    Ludwig-Maximilians-Universität München (LMU), Munich, Germany

    2021 Lukas Peter Hetterich – Synthesis and Characterization of Plasmonic Colloidal Dimers.
    Ludwig-Maximilians-Universität München (LMU), Munich, Germany

    2020 Christoph Gruber – Implementation of an interferometric scattering microscope for imaging nanoscopic processes in perovskite nanomaterials.
    Ludwig-Maximilians-Universität München (LMU), Munich, Germany

    2020 Florian Goschin – Spectroscopic Temperature Measurements on the Nanoscale.
    Ludwig-Maximilians-Universität München (LMU), Munich, Germany

    2016 Harriet Walker – Plasmon-mediated Conversion of SilverNanospheres to Triangular Nanoprisms
    Imperial College London (ICL), London, UK

    2016 Uttara Raju – Controlling the assembly of single nanoparticles on 2D substrates
    Imperial College London (ICL),London, UK

    2015 Jack Kenneally – Improving the homogeneity of triangular nanoprisms grown by photo-induced conversion of colloidal silver
    Imperial College London (ICL), London, UK

    2015 Thomas Brick – An Analysis of Wavelength-Guided Growth Mechanisms for Creating a Homogeneous Set of Numerous Colloidal Silver Nanotriangles
    Imperial College London (ICL), London, UK

    2015 Cloudy Carnegie – Improving control over size, shape and position of colloidal nanoparticles grown via plasmon-induced photosynthesis
    Imperial College London (ICL), London, UK

    2014 Hao Chan – Exploring a new method to produce plasmonic bowtie nanoantennas
    Imperial College London (ICL), London, UK

    2014 Matthew Parker – Comparing methods of fabricating bowtie-nanoantennas to change the optical properties of molecules
    Imperial College London (ICL), London, UK