Nature Communications, 2026
Advanced Materials, 2026
JACS, 2026
ACS Catalysis, 2026
JACS, 2025
Science Advances, 2025
Science, 2025
Advanced Science, 2025
JACS, 2025
Adv. Func. Mat., 2025
JACS, 2025
Angewandte Chemie, 2025
JACS, 2025
Angewandte Chemie, 2025
ACS Catalysis, 2025
Advanced Materials, 2025
Nature Communications, 2025
Chemical Society Reviews, 2025
J. Phys. Chem. Lett, 2025
Advanced Functional Materials, 2025
Advanced Science, 2025
ACS Sensors, 2025
ACS Sustainable Chem & Eng, 2025
Angewandte Chemie, 2025
Nature Communications, 2025
Advanced Functional Materials, 2025
Angewandte Chemie, 2025
Nature Photonics, 2025
Advanced Functional Materials, 2025
Angewandte Chemie, 2025
Nature Communications, 2025
Nature Catalysis, 2025
Nano Letters, 2025
Advanced Science, 2025
Nature, 2024
Nature Physics, 2024
Nature Photonics, 2024
ACS Nano, 2024
Nature Photonics, 2024
Science Advances, 2024
Nature Communications, 2024
Communications Chemistry, 2024
Angew. Chem., 2024
ACS Nano, 2024
Advanced Energy Materials, 2024
Environmental Sci & Technology, 2024
J. Colloid & Interface Science, 2024
ACS App. Mat. & Interfaces, 2024
J. Phys. Chem C, 2024
Nanophotonics, 2024
Angew. Chem., 2024
Nano Letters, 2024
Nature Communications, 2024
ACS Photonics, 2024 – Cover
ACS Photonics, 2024
Nature Photonics, 2024
Adv. Opt. Mat. 2024
Angewandte Chemie Int. Ed., 2024
ACS Nano, 2024 – Cover
ACS Nano, 2024
JACS, 2024
Nature Catalysis, 2023 – Cover
Nature Catalysis, 2023
Angewandte Chemie Int. Ed., 62, 46, 2023
ACS Photonics, 2023
ACS Photonics, 2023
Advanced Optical Materials, 2301496, 2023
Angewandte Chemie Int. Ed., e202309351, 2023
Philosophical Transactions of the Royal Society A, 2023
Angewandte Chemie Int. Ed., e202305651, 2023
ACS Catalysis, 2023
Chemical Reviews 123, 13, 8488–8529, 2023 – Cover
Nature Communications, 4, 3813, 2023
App. Phys. Rev., 2023
ACS Appl. Mater. Interfaces, 2023
Chemical Reviews, 2023
Angewandte Chemie Int. Ed., 2023 – Cover
J. Phys. Chem. Lett., 14, 3749, 2023
Nano Letters, 23, 2883, 2023
Advanced Functional Materials, 2300411, 2023
Advanced Materials, 2300695, 2023
Journal of the Optical Society of America B, 40, 1196, 2023
Angewandte Chemie Int. Ed., e202300873, 2023
ACS Nano, 17, 3119, 2023
Nature, 614, 230, 2023
Chemistry–A European Journal, 29, e202203152, 2023
Angewandte Chemie Int. Ed., 62, e2022170, 2023
Environmental Science: Nano, 10, 166, 2023
ACS Nano, 17, 411, 2023
Angewandte Chemie Int. Ed., 61, e202212640, 2022
ACS Photonics, 9, 11, 2022
Nature Communications, 13, 6082, 2022
Advanced Photonics Research, 2200111, 2022
ACS Nano, 16, 8, 2022
Journal of the American Chemical Society, 144, 32, 2022
Nano Letters, 22, 6276, 2022
Journal of the American Chemical Society, 144, 14005, 2022
Advanced Functional Materials, 2203418, 2022
Chemical Reviews, 122, 19, 2022
European Physical Journal D, 76, 109, 2022
Optica, 9, 551, 2022
Advanced Optical Materials, 10, 2200397, 2022
Applied Catalysis B: Environmental, 306, 5 (121093), 2022
Nature Reviews Chemistry, 6, 259, 2022
Advanced Functional Materials, 2111322, 2021
Nano Letters, 22, 5, 2022
ACS Photonics, 9, 3, 2022
Journal of the American Chemical Society, 144, 7, 2022
ACS Energy Letters, 7, 2, 2022
J. Chem. Phys., 156, 034201, 2022
Angewandte Chemie Int. Ed., 61, 4 (e202113664), 2022
Nano Letters, 21, 24, 2021
ACS Energy Letters, 6, 4273, 2021
Advanced Energy Materials, 11, 46 (2102877), 2021
Nano Letters, 21, 19, 2021
ACS Photonics, 8, 10, 2021
Nanophotonics, 10, 17, 2021
Journal of Materials Chemistry A, 9, 20024, 2021
Nano Letters, 21(15), 6592, 2021
ACS Nano, 15(6), 10553, 2021
Chinese Journal of Catalysis, 42, 1500, 2021
ACS Photonics, 8(5), 1469, 2021
Journal of Applied Physics, 129, 150401, 2021
ACS Nano, 15, 2, 2021
Nano Energy, 82, 105767, 2021
ACS Nano, 14(12), 16202, 2020
ACS Nano, 14(12), 17693, 2020
ACS Energy Letters, 5, 3881, 2020
Nanoscale Horizons, 5(11), 1500, 2020
Nano Letters, 20, 7627, 2020
Science Advances, 6, eabb1821, 2020
Science Advances, 6, eabb3123, 2020
J. Chem. Phys., 153, 010401, 2020
ACS Nano, 14, 7, 2020
ACS Photonics, 7(6), 1403, 2020
Angewandte Chemie Int. Ed., 59, 5454, 2020
ACS Nano, 14 (2), 2456, 2020
Advanced Science, 6, 1901841, 2019
Angewandte Chemie Int. Ed., 58, 2, 2019
Accounts of Chemical Research, 52, 2525, 2019
ACS Photonics, 6, 1466, 2019
ACS Photonics, 6, 815, 2019
Nano Letters, 19, 1867, 2019
Faraday Discussions, 214, 123, 2019
Faraday Discussions, 214, 73, 2019
Physical Review Letters, 121, 253902, 2018
Science, 362, 28, 2018
Nano Letters, 18, 3400, 2018
ACS Photonics, 5, 4, 1546, 2018
J. Phys. Chem. C, 122, 7, 3893, 2018
Plasmonic Catalysis: From Fundamentals to Applications
- Integrated Method for Determining Quantum Yield through Combined Microscopy Techniques. C. Gruber, M. Beladi Mousavi, A. Mancini, E. Cortes. EP23207502, 2023.
- Advanced optical microscopy for real-time dynamics of energy materials. C. Gruber, F. Gröbmeyer, M. Beladi Mousavi, A. Mancini, E. Cortes. EP23198634, 2023.
- Embedding of catalytically active nanoparticles into superstructures of plasmonic nanoparticles to enhance the photocatalytic activity. M. Herran, F. Schulz, E. Cortes. 22 186 109.9. July 2022.
- Nano-detection, SERS active surfaces based on multi-scale antennas. N. Tognalli, E. Cortés, E. Calvo, M. E. Vela, A. Fainstein, R. C. Salvarezza. P20100102376. July 2010.
PhD Theses
Li Zhu
Christoph Gruber
Yicui Kang
Simone Vera Ezendam
Lin Nan
Matias Herran
Harriet Amelia Walker
Thomas Brick
Master Theses
2025 Klara V. Dömer – Imaging Hydrogen Evolution on Bimetallic Catalytic SurfacesLudwig-Maximilians-Universität München (LMU), Munich, Germany
2025 Joel P. S. Mascarenhas – Enhancing Polaron Dynamics for Photoelectrochemical Water Splitting in BiVO4 MetasurfacesLudwig-Maximilians-Universität München (LMU), Munich, Germany
2025 Matthis Bünning – Au@Al(OH)3 Nanostructure for Plasmon-Enhanced Direct Lithium Extraction
Ludwig-Maximilians-Universität München (LMU), Munich, Germany2024 Sebastian Trautschold – Comparative Analysis of Metal Catalyst Films for CO2 Reduction Studies via Surface-Enhanced ATR-FTIR Spectroscopy.
Ludwig-Maximilians-Universität München (LMU), Munich, Germany2024 Qiancheng Yang – Discovering CO2 Electroreduction Pathways with Sparse Machine Learning Method.
Ludwig-Maximilians-Universität München (LMU), Munich, Germany
2023 Sebastian Langer – Optical and Photoelectrocatalytic Analysis of Copper-Only Metasurfaces towards CO₂ Reduction.
Ludwig-Maximilians-Universität München (LMU), Munich, Germany2022 Stefan Krühler – Ultrafast Dynamics of Hybrid Nanoparticles for Energy Conversion.
Ludwig-Maximilians-Universität München (LMU), Munich, Germany2022 Jonas Tittel – Construction of a Transient-Absorption Infrared Spectro-Electrochemical setup.
Ludwig-Maximilians-Universität München (LMU), Munich, Germany2021 Maximilian Maier – New Strategies for Tracking Kinetics of Photocatalytic Chemical Reactions on the Single-Molecule Level.
Ludwig-Maximilians-Universität München (LMU), Munich, Germany2021 Franz Gröbmeyer – Imaging of Electrochemical Processes with an Interferometric Scattering Microscope.
Ludwig-Maximilians-Universität München (LMU), Munich, Germany2021 Yicui Kang – Facet Effect of Au Nanocrystals in Plasmon-assisted Electrocatalysis.
Ludwig-Maximilians-Universität München (LMU), Munich, Germany2021 Lukas Peter Hetterich – Synthesis and Characterization of Plasmonic Colloidal Dimers.
Ludwig-Maximilians-Universität München (LMU), Munich, Germany2020 Christoph Gruber – Implementation of an interferometric scattering microscope for imaging nanoscopic processes in perovskite nanomaterials.
Ludwig-Maximilians-Universität München (LMU), Munich, Germany2020 Florian Goschin – Spectroscopic Temperature Measurements on the Nanoscale.
Ludwig-Maximilians-Universität München (LMU), Munich, Germany2016 Harriet Walker – Plasmon-mediated Conversion of SilverNanospheres to Triangular Nanoprisms
Imperial College London (ICL), London, UK2016 Uttara Raju – Controlling the assembly of single nanoparticles on 2D substrates
Imperial College London (ICL),London, UK2015 Jack Kenneally – Improving the homogeneity of triangular nanoprisms grown by photo-induced conversion of colloidal silver
Imperial College London (ICL), London, UK2015 Thomas Brick – An Analysis of Wavelength-Guided Growth Mechanisms for Creating a Homogeneous Set of Numerous Colloidal Silver Nanotriangles
Imperial College London (ICL), London, UK2015 Cloudy Carnegie – Improving control over size, shape and position of colloidal nanoparticles grown via plasmon-induced photosynthesis
Imperial College London (ICL), London, UK2014 Hao Chan – Exploring a new method to produce plasmonic bowtie nanoantennas
Imperial College London (ICL), London, UK2014 Matthew Parker – Comparing methods of fabricating bowtie-nanoantennas to change the optical properties of molecules
Imperial College London (ICL), London, UK
